Lecture 23

Two Germans and an Englishman

Robert Robinson 1886-1975
Nobel Laureate 1947

Otto Paul Hermann Diels 1876-1954

Kurt Alder 1902-1958

Nobel Laureates 1950

Exam III - Wed April 24

- PAI 3.02
- 7-9 PM
- Covers thru $4 / 18$
- Homework
- Hydrolysis
- Reactions
- Synthesis
- Get an A!!!

Review Session

- Where: Here
- When: Tuesday April 23 at 5PM
- Bring questions from your studies

Kinetic Control

- When a reaction is under kinetic control, the composition of the product mixture is determined by the relative rates of formation of each product

Thermodynamic Control

- When a reaction is under thermodynamic control, the composition of the product mixture is determined by the relative stabilities of each product

Reaction energy diagram for addition of HBr to butadiene

Conjugate Addition

1,2 addition

Conjugate addition

Michael Reaction

Michael Reaction

Michael Addition

- The Michael reaction is a useful method for forming carbon-carbon bonds....1,5 dicarbonyls

The Robinson Annelation: 1. Michael addition

KOH , methanol

Robert Robinson Nobel 1947

Robinson annelation: 2. aldol condensation

not isolated; dehydrates under reaction conditions

Robinson annelation: 3. elimination

The Signature Page

Claisen Condensation: β-ketoesters
Dieckmann: Cyclic β-ketoesters
Aldol: α, β-unsaturated aldehydes and ketones
Acetoacetic ester synthesis: decorated acetones
Malonic ester synthesis: decorated acetic acids
Michael Reaction: 1-5 dicarbonyl compounds
Grignard Reaction: Alcohols
Wittig Reaction: Alkenes. ..., etc

The Diels-Alder Reaction

Otto Paul Hermann Diels 1876-1954

Kurt Alder 1902-1958

Diels-Alder Reaction:

- The Diels-Alder reaction is an addition reaction between a 1,3-diene and an alkene (called a dienophile), that forms a new six-membered ring.

Or, emphasizing how the two components fit together:

Predict the products

All Diels-Alder reactions:

1. are initiated by heat; that is, the Diels-Alder reaction is a thermal reaction.
2. form new six-membered rings.
3.involve breaking three π bonds and making two new σ bonds and one new π bond.
3. are concerted; that is, all bonds are broken and new bonds formed in a single step.

4 Rules that govern the Diels-Alder reaction

1. The diene can react only from the s-cis conformation.

2. Electron-withdrawing substituents in the dienophile increase the reaction rate.

- The conjugated diene acts as a nucleophile and the dienophile acts as an electrophile.
- Electron-withdrawing groups make the dienophile more reactive
- If Z is an electron-withdrawing group, then the reactivity of the dienophile increases as follows:

$$
\mathrm{CH}_{2}=\mathrm{CH}_{2} \quad \mathrm{CH}_{2}=\mathrm{CHZ} \quad \mathrm{ZCH}=\mathrm{CHZ}
$$

Increasing reactivity

Common dienophiles

The carbonyl group is electron-withdrawing and activates dienophiles

acrolein

methyl vinyl ketone

methyl acrylate

maleic anhydride

benzoquinone

Example

0 II
 $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}$ benzene $100^{\circ} \mathrm{C}$

(100\%)

3. The stereochemistry of the dienophile is retained.

Acetylenic Dienophile

 $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}=\mathrm{CH}_{2}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCC} \equiv \mathrm{CCOCH}_{2} \mathrm{CH}_{3}$

Example

$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}=\mathrm{CH}_{2}+$

b
only product

Example

$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}=\mathrm{CH}_{2}+$

4. When endo and exo products are possible, the endo product is preferred.

endo and exo indicate the orientation of Z. endo = on the side of the big bridge

exo = on the side of the small bridge

The endo product is preferred!

Examples of

 endo addition
preferred product

[new σ bonds in red]
preferred product

Some nomenclature

A fused bicyclic system

- One bond is shared by two rings.
- The shared C's are adjacent.

A bridged bicyclic system

- Two non-adjacent atoms are shared by both rings.

Nomenclature of Bicyclic Systems

Bicyclo [\#.\#.\#]alkane

Where \# is the number of carbons on the bridges (in decreasing order) and the alkane name includes all the carbons in the compound.

Nomenclature of Bicyclic Systems

Numbering begins at a bridgehead, goes around the largest ring first, to give the lowest number to any functionality on the ring.

7-Methyl-bicyclo[4.2.0]octan-3-one

Some nomenclature

- If substituents are present, number the bridge ring system beginning at on bridge-head, proceeding first along the longest bridge to the other bridge-head. The shortest bridge is named last

8-methylbicyclo[3.2.1]octane

8-methylbicyclo[4.3.0]nonane

Practice

Aldol products from what ??

Practice Exercises Disguised signatures!?

show how the following compounds could be synthesized by a path that Includes an aldol or mixed aldol condensation,

Don't let disguises fool you!

Make these starting with ethyl acetate or diethyl malonate and anything else

How far can you expand this web?

Interconversions

- Problem: show reagents and experimental conditions to bring about each reaction

Next....... POLYMERS

Jöns Jacob Berzelius (1779-1848)

Hermann Staudinger (1881-1965)

Wallace Hume Carothers (1896-1937)

